Lin A., Manral N., McElhinney P., Killekar A., Matsumoto H., Kwiecinski J., Pieszko K., Razipour A., Grodecki K., Park C., Otaki Y., Doris M., Kwan A. C., Han D., Kuronuma K., Flores Tomasino G., Tzolos E., Shanbhag A., Goeller M., Marwan M., Gransar H., Tamarappoo B. K., Cadet S., Achenbach S., Nicholls S. J., Wong D. T., Berman D. S., Dweck M., Newby D. E., Williams M. C., Slomka P. J., & Dey D. (2022). Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study. Lancet Digital Health, 4(4): e256-e265. https://doi.org/10.1016/S2589-7500(22)00022-X
Stieglitz D., Lamm S., Braig S., Feuerer L., Kuphal S., Dietrich P., Arndt S., Echtenacher B., Hellerbrand C., Karrer S., & Bosserhoff A. K. (2019). BMP6-induced modulation of the tumor micro-milieu. Oncogene, 38(5), 609-621. https://doi.org/10.1038/s41388-018-0475-x
Breininger, K., Hanika, M., Weule, M., Kowarschik, M., Pfister, M., & Maier, A. (2019). Simultaneous reconstruction of multiple stiff wires from a single X-ray projection for endovascular aortic repair. International Journal of Computer Assisted Radiology and Surgery, 14, 1891-1899. https://doi.org/10.1007/s11548-019-02052-7
Zarzor, M. S., Kaessmair, S., Steinmann, P., Blümcke, I., & Budday, S. (2021). A two-field computational model couples cellular brain development with cortical folding. Brain Multiphysics, 2, 100025. https://doi.org/10.1016/j.brain.2021.100025
McLennan, S., Fiske, A., Celi, L. A., Müller, R., Harder, J., Ritt, K., Haddadin, S. & Buyx, A. (2020). An embedded ethics approach for AI development. Nature Machine Intelligence, 2(9), 488-490. https://doi.org/10.1038/s42256-020-0214-1
Peeken J. C., Shouman M. A., Kroenke M., Rauscher I., Maurer T., Gschwend J. E., Eiber M., & Combs S. E. (2020). A CT-based radiomics model to detect prostate cancer lymph node metastases in PSMA radioguided surgery patients. European Journal of Nuclear Medicine and Molecular Imaging, 47, 2968-2977. https://doi.org/10.1007/s00259-020-04864-1
Haefner, B., Peng, S., Verma, A., Quéau, Y., & Cremers, D. (2019). Photometric depth super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(10), 2453-2464. https://doi.org/10.1109/TPAMI.2019.2923621
Hannink, J., Kautz, T., Pasluosta, C. F., Barth, J., Schülein, S., Gaßmann, K. G., Klucken, J., & Eskofier, B. M. (2018). Mobile Stride Length Estimation with Deep Convolutional Neural Networks. IEEE Journal of Biomedical and Health Informatics, 22(2), 354-362. https://doi.org/10.1109/JBHI.2017.2679486
Hagelauer, A., Wojnowski, M., Pressel, K., Weigel, R., & Kissinger, D. (2017). Integrated systems-in-package: Heterogeneous integration of millimeter-wave active circuits and passives in fan-out wafer-level packaging technologies. IEEE Microwave Magazine, 19(1), 48-56. https://doi.org/10.1109/MMM.2017.2759558
Mueller, S., Winzer, E. B., Duvinage, A., Gevaert, A. B., Edelmann, F., Haller, B., Pieske-Kraigher, E., Beckers, P., Bobenko, A., Hommel, J., Van de Heyning, C.M., Esefeld, K., von Korn, P., Christle, J.W., Haykowsky, M.J., Linke, A., Wisløff, U., Adams, V., Pieske, B., van Craenenbroeck, E.M., & Halle, M., OptimEx-Clin Study Group. (2021). Effect of high-intensity interval training, moderate continuous training, or guideline-based physical activity advice on peak oxygen consumption in patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA, 325(6), 542-551. https://doi.org/10.1001/jama.2020.26812
Hutter, J., Christiaens, D., Schneider, T., Cordero-Grande, L., Slator, P., Deprez, M., Price, A., Tournier, J., Rutherford, M, & Hajnal, J. (2018). Slice-level diffusion encoding for motion and distortion correction. Medical Image Analysis, 48, 214-229. https://doi.org/10.1016/j.media.2018.06.008
Liu T., Meng Q., Huang J. J., Vlontzos A., Rueckert D., & Kainz B. (2022) Video summarization through reinforcement learning with a 3D spatio-temporal u-net. IEEE Transactions on Image Processing; 31, 1573-86. https://doi.org/10.1109/TIP.2022.3143699
Hammernik, K., Klatzer, T., Kobler, E., Recht, M., Sodickson, D., Pock, T., & Knoll, F. (2018). Learning a variational network for reconstruction of accelerated MRI data. Magnetic Resonance in Medicine, 79(6), 3055-3071. https://doi.org/10.1002/mrm.26977
Poch CM, Foo KS, De Angelis MT, Jennbacken K, Santamaria G, Bähr A, Wang QD, Reiter F, Hornaschewitz N, Zawada D, Bozoglu T, My, I., Meier, A., Dorn, T., Hege, S. Lehtinen, M. L., Long, Y., Hovdal D., Hyllner, J. Schwarz, S. Sudhop, S., Jurisch, M. Sini, M., Fellows, D., Cummings, M., Clarke, J., Baptista, R., Eroglu, E. Wolf, E., Klymiuk, N., Lu, K., Tomasi, R., Dendorfer, A., Gaspari, M., Parrotta, E., Cuda, G., Krane, M., Sinnercker, D. Hoppmamm, P., Kupatt, C., Fritsche-Danielson, R., Moretti, A., Chien, K. R., &, Laugwitz K. L. (2022). Migratory and anti-fibrotic programmes define the regenerative potential of human cardiac progenitors. Nature Cell Biology, 24(5), 659-671. https://doi.org/10.1038/s41556-022-00899-8
Maier, A., Syben, C., Stimpel, B., Würfl, T., Hoffmann, M., Schebesch, F., Weilin F., Mill, L., Kling, L., & Christiansen, S.. (2019). Learning with known operators reduces maximum error bounds. Nature Machine Intelligence, 1(8), 373-380. https://doi.org/10.1038/s42256-019-0077-5
Kaissis, G., Ziller A., Passerat-Palmbach J., Ryffel T., DUsynin D., Trask A., Costa Junior I, Mancuso, Jungmann F, Steinborn M, Saleh, Makowski, M., Rueckert D. & Braren R., (2021) End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nature Machine Intelligence, 3(6), 473–484. https://doi.org/10.1038/s42256-021-00337-8
Müller, Vincent C. (2020), ‘Ethics of AI and robotics’, in Edward N. Zalta (ed.), Stanford Encyclopedia of Philosophy (Palo Alto: Stanford University) – Spring 2020 edition. https://plato.stanford.edu/entries/ethics-ai/
Ghorbani, M., Kazi, A., Baghshah, M. S., Rabiee, H. R., & Navab, N. (2022). RA-GCN: Graph convolutional network for disease prediction problems with imbalanced data. Medical Image Analysis, 75, 102272. https://doi.org/10.1016/j.media.2021.102272
Shnaiderman, Ρ., Wissmeyer, G., Ülgen, Ο., Mustafa, Q., Chmyrov, A., & Ntziachristos, V. (2020). A submicrometre silicon-on-insulator resonator for ultrasound detection. Nature., 585(7825), 372-378. https://doi.org/10.1038/s41586-020-2685-y
Willer, K., Fingerle, A., Noichl, W., De Marco, F., Frank, M., Urban, T., Schick, R., Gustschin, A., Gleich, B., Herzen, J., Koehler, T., Yaroshenko, A., Pralow, T., Zimmermann, G., Renger, B., Sauter, A., Pfeiffer, D., Makowski, M., Rummeny, E., Grenier, P. & Pfeiffer, F. (2021). X-ray darkfield chest imaging for detection and quantification of emphysema in patients with chronic obstructive pulmonary disease: a diagnostic accuracy study. Lancet Digital Health, 3(11), e733-e744. https://doi.org/10.1016/S2589-7500(21)00146-1
Schlemper, J., Oktay, O., Schaap, M., Heinrich, M., Kainz, B., Glocker, B., & Rueckert, D. (2019). Attention gated networks: Learning to leverage salient regions in medical images. Medical Image Analysis, 53, 197-207. https://doi.org/10.1016/j.media.2019.01.012
Öksüz I., Cough J., Ruijsink B., Puyol Antón E., Bustin A., Cruz G., Prieto C., King A. P., & Schnabel J. A. (2020). Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation. IEEE Transactions on Medical Imaging. 39(12), 4001-10. https://doi.org/10.1109/TMI.2020.3008930
Bergen, V., Lange, M., Peidli, S., Wolf, F. A., & Theis, F. J. (2020). Generalizing RNA velocity to transient cell states through dynamical modeling. Nature Biotechnology, 38, 1408–1414. https://doi.org/10.1038/s41587-020-0591-3
Regensburger, A. P., Fonteyne, L. M., Jüngert, J., Wagner, A. L., Gerhalter, T., Nagel, A. M., Heiss, R., Flenkenthaler, M., Qurashi, M., Neurath, M. F., Klymiuk, N., Kemter, E., Fröhlich, T., Uder, M., Woelfle, J., Rascher W., Trollmann, R., Wolf, E., Waldner, M. J., & Knieling, F. (2019). Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy. Nature Medicine, 25(12), 1905-1915. https://doi.org/10.1038/s41591-019-0669-y
Tschapek, P., Körner, G., Fenske, P., Carlowitz, C., & Vossiek, M. (2022). A novel approach for modeling and digital generation of RF signals distorted by bandlimited phase noise. IEEE Journal of Microwaves, 2(4), 699-710. https://doi.org/10.1109/JMW.2022.3188166
Marzahl, C., Aubreville, M., Bertram, C. A., Maier, J., Bergler, C., Kröger, C., K., Breininger, K., Klopfleisch, R. & Maier, A. (2021). EXACT: a collaboration toolset for algorithm-aided annotation of images with annotation version control. https://github.com/ChristianMarzahl/Exact
Schuh, A., Rueckert, D. & Schnabel, J. A. Medical Image Registration ToolKit (MIRTK). https://mirtk.github.io/
Lange, M., Bergen, V., Klein, M., Setty, M., Reuter, B., Bakhti, M., Lickert, H., Ansari, M., Schniering, J., Schiller, H. B., Pe’er, D. & F. J. Theis. (2022). CellRank for directed single-cell fate mapping. https://github.com/theislab/cellrank
Wolf, F. A., Angerer, P. & Theis, F. J. (2018). Scanpy – Single-Cell Analysis in Python. https://github.com/scverse/scanpy
Edwards, A. D., Rueckert, D., Smith, S. M., Abo Seada, S., Alansary, A., Almalbis, J., Allsop, J. M., Arichi, T., Andersson, J., Arulkumaran, S., Bastiani, M., Batalle, D., Baxter, L., Bozek, J., Braithwaite, E., Brandon, J., Carney, O., Chew, A., Christiaens, D., Chung, R., Colford, K., Cordero-Grande, L., Counsell, S. J., Cullen, H., Cupitt, J., Curtis, C., Davison, A., Deprez, M., Dillon, L., Dimitrakapoulou, K., Dimitrova, R., Duff, E., Falconer, S., Farahibozorgwe, R., Fitzgibbon, S., Gao, J., Gaspar, A. S., Harper, N., Harrison, S. J. , Hughes, E. J., Hutter, J., Jenkinson, M., Jbabdi, S., Jones, E., Karolis, V., Kyriakopoulou, V., Lenz, G., Makropoulos, A., Malik, S., Mortari, F., Nosarti, C., Nunes, R. G., O'Keefe, C., O'Muircheartaigh, H. Patel, J. Passerat-Palmbach, M. Pietsch, A. N. Price, E. Robinson, M. A. Rutherford, J., Schuh, A., Sotiropoulos, S., Steinweg, J. K., Teixeira, R. P. A. G., Tenev, T., Tournier, J.-P., Tusor, N., Uus, A., Vecchiato, K., Williams, L. Z. J., Wright, R., Wurie, J. & Hajnal, J. V. The Developing Human Connectome Project Neonatal Data Release. http://www.developingconnectome.org/data-release/third-data-release/ and https://doi.org/10.3389/fnins.2022.886772
Aubreville, M., Bertram, C. A., Stathonikos, N., Veta, M., Donovan, T., ter Hoeve, N., Ciompi, F., Marzahl, C., Wilm, F., Breininger, K., Maier, A. & Klopfleisch, R. MItosis DOmain Generalization Challenge 2021 (MICCAI-MIDOG) Training Data and Challenge Description. https://zenodo.org/record/4573978
Sikkema, L., Strobl, D., Zappia, L., Madissoon, E., Markov, N. S., Zaragosi, L., Ansari, M., Arguel, M., Apperloo, L., Bécavin, C., Berg, M., Chichelnitskiy, E., Chung, M., Collin, A., Gay, A. C. A., Hooshiar Kashani, B., Jain, M., Kapellos, T., Kole, T. M., Mayr, C., von Papen, M., Peter, L., Ramírez-Suástegui, C., Schniering, J., Taylor, C., Walzthoeni, T., Xu, C., Bui, L. T., de Donno, C., Dony, L., Guo, M., Gutierrez, A. J., Heumos, L., Huang, N., Ibarra, I., Jackson, N., Kadur Lakshminarasimha Murthy, P., Lotfollahi, M., Tabib, T., Talavera-Lopez, C., Travaglini, K., Wilbrey-Clark, A., Worlock, K. B., Yoshida, M., Lung Biological Network Consortium, Desai, T., Eickelberg, O., Falk, C., Kaminski, N., Krasnow, M., Lafyatis, R., Nikolíc, M., Powell, J., Rajagopal, J., Rozenblatt-Rosen, O., Seibold, M. A., Sheppard, D., Shepherd, D., Teichmann, S. A., Tsankov, A., Whitsett, J., Xu, Y., Banovich, N. E., Barbry, P., Duong, T. E., Meyer, K. B., Kropski, J. A., Pe’er, D., Schiller, H. B., Tata, P. R., Schultze, J. L., Misharin, A. V., Nawijn, M. C., Luecken, M. D., & Theis, F. (2023). An integrated cell atlas of the human lung in health and disease. BioRxiv. https://doi.org/10.1101/2022.03.10.483747
Knoll, F., Zbontar, J., Sriram, A., Muckley, M. J., Bruno, M., Defazio, A., Parente, M., Geras, K. J., Katsnelson, J., Chandarana, H., Zhang, Z., Drozdzalv, M., Romero, A., Rabbat, M., Vincent, P., Pinkerton, J., Wang, D., Yakubova, N., Owens, E., Zitnick, C. L., Recht, M. P., Sodickson, D. K., & Lui, Y. W. (2020). fastMRI: A publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning. Radiology: Artificial Intelligence, 2(1), e190007. https://doi.org/10.1148/ryai.2020190007
Maier, A., Steidl, S., Christlein, V. & Hornegger, J. (2018) Medical Imaging Systems – An Introductory Guide, Springer Verlag.
Frangi, A. F., Schnabel, J. A., Davatzikos, C., Alberola-López, C. & Fichtinger, G. (2018). Medical Image Computing and Computer Assisted Intervention (MICCAI), 21st International Conference, Granada, Spain, Lecture Notes in Computer Science 11070-11073, Springer Verlag.
Knoll, F., Maier, A. & Rueckert, D. (2018) Machine Learning for Medical Image Reconstruction (MLMIR). First International Workshop, Granada, Spain, Lecture Notes in Computer Science 11074, Springer Verlag.
Knoll, F., Maier, A., Rueckert, D. & Ye, J. C. (2019) Machine Learning for Medical Image Reconstruction (MLMIR). Second International Workshop, Shenzhen, China, Lecture Notes in Computer Science, Vol. 11905, Springer Verlag.
Zhou, S. K., Rueckert, D. & G. Fichtinger, G. (2019) Handbook of Medical Image Computing and Computer Assisted Intervention. 1st Edition, Academic Press.
Feragen, A., Sommer, S., Schnabel, J. A. & Nielsen, M. (2021). Information Processing in Medical Imaging (IPMI), 27th International Conference, Virtual Event, Lecture Notes in Computer Science 12729, Springer.
Sutton, J., Menten, M. J., Riedl, S., Bogunović, H., Leingang, O., Anders, P., Hagag, A. M., Waldstein, S., Wilson, A., Cree, A. J., Traber, G., Fritsche, L. G., Scholl, H., Rueckert, D., Schmidt-Erfurth, U., Sivaprasad, S., Prevost, T. & Lotery, (2023). Developing and validating a multivariable prediction model which predicts progression of intermediate to late age-related macular degeneration—the PINNACLE trial protocol. Eye, 37(6), 1275-1283. https://doi.org/10.1038/s41433-022-02097-0
von Korn, P., Sydow, H., Neubauer, S., Duvinage, A., Mocek, A., Dinges, S., Hackenberg, B., Weichenberger, M., Schoenfeld, J., Amelung, V., Mueller, S., & Halle, M. (2021). Lifestyle Intervention in Chronic Ischaemic Heart Disease and Type 2 Diabetes (the LeIKD study): study protocol of a prospective, multicentre, randomised, controlled trial. BMJ open, 11(2), e042818. https://doi.org/10.1136/bmjopen-2020-042818
Rueckert, D., Wolz R. & Aljabar, P. Method and apparatus for processing medical images (US9251596B2), Patent granted and licensed to IXICO.
Kirk, R. F., Zwick, C.,Schuldhaus, D., Körger, H., Dorschky, E. A., DiBenedetto, C., & Eskofier, B. M. Shoes for ball sports. CN106063607A; CN106063607B; EP3092913A1; EP3092913B1; EP3692848A1; JP2016221251A; JP6364438B2; US10039339B2; US10863790B2; US11540589B2; US2016309834A1; US2017172246A1; US2018332921A1; US2021052032A1; US2023088266A1; US9609904B2. Patent granted and licensed to Addidas.
Knoll, F., Hammernik, K., Pock, T. & Sodickson, D. System, method and computer-accessible medium for learning an optimized variational network for medical image reconstruction. US Patent US20170309019A1 (2016). Patent Granted.
Böse, J. & Maier, A. Angiographisches Untersuchungsverfahren eines Patienten zur 3-D-Rotationsangiographie. DE102012205245 20120330. Patent Granted.
Maier, A. & Redel, T. Angiographic inspection method of vascular system of patient, involves calculating motion field of three-dimensional points for performing movement-corrected reconstruction with respect to the data obtained in data acquisition process. DE201210202648. Patent Granted and licensed to Siemens Healthcare.
Maass, N., Würfl, T., & Maier, A. Method for reducing image artifacts, CN108338802A; CN108338802B; DE102017200282B3; US10194884B2; US2018192985A1. Patent Granted and licensed to Siemens Healthcare.
Bauer, S., Kugler, P., Stromer, D., Lauritsch, G. & Maier, A. Tomography device and method for large volume 3D scans. CN106880372A; CN106880372B; DE102015219520A1; US10398390B2; US2017100083A1. Patent Granted.
Gulden, P. & Vossiek, M. Method in a radar system, radar system, and/or device of a radar system. US10962634B2, Patent granted and licensed to Symeo GmbH.
Heide, P., Nalezinski, M., Vossiek, M. & Wiebking, L. Transponder system and method for measurement of separation", US7119736B2, Patent granted and licensed to Symeo GmbH.